Comment fonctionne l'extraction avec le CO2?

Comment fonctionne l'extraction avec le CO2?

The main feature of supercritical fluids (SCF) is the tunability of their properties as solvent, supercritical CO2 or SC-CO2 extraction processes present an important advantage over low pressure methods, i.e., the selectivity of supercritical CO2 can be adjusted by varying temperature and pressure to obtain fractions containing specific compounds. Since the enhanced solubility effect is selective, a supercritical fluid can form the basis of a system for separating components of mixtures. At the same time, vapor pressure effects are also enhanced.

The recovery of extracts concentrated in target compounds, even during the extraction process, can lead to a product with high economic value and simplify subsequent fractionation steps.

As the supercritical CO2 density increases, its transport capability also increases, to the point that it can entrain significant amounts of relatively nonvolatile compounds. Under proper conditions, supercritical CO2 separations combine the phenomena of solvent extraction and distillation. The behavior of supercritical substance changes with a rise of its density. In particular, it can dissolve substantial quantities of compounds that would be at best sparingly soluble in the same substance in its ordinary liquid or gaseous states.

The supercritical method has the advantage that it can be used for separating mixtures of high-boiling components that would decompose during fractional distillation.

Another strong point of supercritical CO2 extraction is that once the oil is extracted from the plant material, the CO2 is simply returned to its gaseous state by lowering its pressure, allowing the gas to quickly and completely dissipate.

The supercritical CO2 extraction and purification process is also more important because it supports the separation without any contamination or degradation.

Recently many researchers have proved that the performance of the supercritical fluid technology increases with the use of alternative solvents or addition of the modifiers to SC-CO2 because it has limitations resulting from its lack of polarity and associated lack of capacity for specific solvent–solute interactions. Thus, there is a great incentive to improve solvent polarity. For these purposes, small amounts of a highly polar co-solvent can be added to CO2 in order to increase its solvating power.

Qu'est-ce qu'un fluide supercritique?

Qu'est-ce qu'un fluide supercritique?

A supercritical fluid is any substance at temperature and pressure above its critical point. It can diffuse through solids like a gas, and it can dissolve materials like a liquid. In addition, close to the critical point, small changes in pressure or temperature result in

Large Changes in Density, allowing many properties of a supercritical fluid to be “fine-tuned”. Supercritical fluids are suitable as a substitute for organic solvents in a range of industrial and laboratory processes. Carbon dioxide and water are the most commonly used supercritical fluids, being used for decaffeination and power generation, respectively.

Supercritical Fluid Extraction (SFE) is the process of separating one component (the extractant) from another (the matrix) using supercritical fluids as the extracting solvent. If you need additional information, click here. Extraction is usually from a solid matrix, but can also be from liquids. SFE can be used as a sample preparation step for analytical purposes, or on a larger scale to either strip unwanted material from a product (e.g. decaffeination) or collect a desired product (e.g. essential oils). Carbon dioxide (CO2) is the Most Used supercritical fluid, sometimes modified by co-solvents such as ethanol or methanol. Extraction conditions for supercritical CO2 are above the critical temperature of 31°C and critical pressure of 74 bar. Addition of modifiers may slightly alter this. The discussion below will mainly refer to extraction with CO2, except where specified.

The Critical Point (C) is marked at the end of the gas-liquid equilibrium curve, and the shaded area indicates the supercritical fluid region. It can be shown that by using a combination of isobaric changes in temperature with isothermal changes in pressure, it is possible to convert a pure component from a liquid to a gas (and vice versa) via the supercritical region without incurring a phase transition.

The behavior of a fluid in the supercritical state can be described as that of a very mobile liquid. The solubility behavior approaches that of the liquid phase while penetration into a solid matrix is facilitated by the gas-like transport properties. As a consequence, the rates of extraction and phase separation can be significantly faster than for conventional extraction processes. Furthermore, the extraction conditions can be controlled to effect a selected separation. Supercritical fluid extraction is known to be dependent on the density of the fluid that in turn can be manipulated through control of the system pressure and temperature. The dissolving power of a SCF increases with isothermal increase in density or an Isopycnic (constant density) increase in temperature. In practical terms this means that a SCF can be used to extract a solute from a feed matrix as in conventional liquid extraction. However, unlike conventional extraction, once the conditions are returned to ambient the quantity of residual solvent in the extracted material is negligible.

The basic principle of SCF extraction is that the solubility of a given compound (solute) in a solvent varies with both temperature and pressure. At ambient conditions (25°C and 1 bar) the solubility of a solute in a gas is usually related directly to the vapor pressure of the solute and is generally negligible. In a SCF, however, solute solubilities of up to 10 orders of magnitude greater than those predicted by ideal gas law behavior have been reported.

The dissolution of solutes in supercritical fluids results from a combination of vapor pressure and solute-solvent interaction effects. The impact of this is that the solubility of a solid solute in a supercritical fluid is not a simple function of pressure.

Although the solubility of volatile solids in SCF is higher than in an ideal gas, it is often desirable to increase the solubility further in order to reduce the solvent requirement for processing. The solubility of components in SCFs can be enhanced by the addition of a substance referred to as an entrainer, or co-solvent. The Volatility of this additional component is usually intermediate to that of the SCF and the solute. The addition of a co-solvent provides a further dimension to the range of solvent properties in a given system by influencing the chemical nature of the fluid.

Co-solvents also provide a mechanism by which the extraction selectivity can be manipulated. The commercial potential of a particular application of SCF technology can be significantly improved through the use of co-solvents. A factor that must be taken into consideration when using co-solvents, however, is that even the presence of small amounts of an additional component to a primary SCF can change the critical properties of the resulting mixture considerably.

Qu'est-ce qu'un extrait/huile de CO2 ?

Qu'est-ce qu'un extrait/huile de CO2 ?

Supercritical CO2 extracts display some of the characteristics of both essential oils and absolutes. Like essential oils, they contain many beneficial therapeutic properties. But unlike absolutes, they are not solvent extracted.

The composition of a supercritical CO2 or subcritical CO2 extract is generally different from the equivalent essential oil. Because of these differences, CO2 extracts can have distinct therapeutic properties. For example, Ginger CO2 contains gingerols, constituents that give ginger its pungent taste. There two principal types of CO2 extract:

  • Select extracts: are generally more similar to essential oils
  • Total extracts: contain more heavier molecules and could be compared to absolutes.

Because the plant material is not exposed to air (oxygen) or heat, as compared to steam distillation, none of the compounds change or oxidises during extraction. Hence, the final extract is just the same as in the plant – the same composition and aroma. In the case of German Chamomile CO2 extract, matricin is not converted to the dark blue chamazulene, as in the steam distilled oil.

Major benefits of CO₂ extracts

  • Extractions occur at lower temperatures than steam distillation, so more delicate botanicals are not destroyed
  • Carbon dioxide is nontoxic, odorless, and is easily removed from the extracted oil
  • More stable with a long shelf life
  • Contain no carbohydrates, inorganic salts, proteins, allergens, or germs
  • Meet strict heavy metal requirements

CO2 phase diagram – States of matter

Diagramme de phase du CO2 - États de la matière.

CO2 isn’t a liquid at room pressure: it’s a gas.

In the picture here on the right, taken from The Engineering ToolBox, the equilibrium curve is the colored one between the triple point and the critical point.

The Triple Point is the only plot’s point in which there are at the same time solid, liquid and gasseous phase of the material. It’s characterized by particular condition of temperature and pression. The Critical Point is characterized by the disappearance of the difference between gaseous phase and liquid phase.

In condiction of temperature and pressure over the critical point, we talk about Supercritical Fluid. The CO2 is at the same time a liquid a gas during all of the plot’s points that shape the Equilibrium Curve.

Going over other thermodynamic and technical discussions, maintaining the CO2 always along this curve will save a lot of energy. Our system is designed to maintain this equilibrium in the Reservoir, one of the most important vessel in the system.

Without a good control of temperature and pressure at the reservoir’s level, you’ll never be able to have a stable flow in the system.

In our system it’s easy to set the pressure in the reservoir at the desired value. We suggest 48 bar. The system, thanks to the full automation control, will stabilize the pressure automatically.

Le CO2 est-il polaire ou non polaire?

Le CO2 est-il polaire ou non polaire?

The supercritical fluid commonly utilized is carbon dioxide (CO2). The state diagram of CO2 visualizes the various phases (solid, liquid, gas) depending on pressure and temperature. CO2, at 31,1°C and 73,8 bar, is in its supercritical state, in which there is no distinction between liquid and gaseous phases (as shown in the following picture).

Increasing the temperature and keeping the pressure constant (73,8 bar), CO2 remains in the supercritical state, and so happens when pressure is increased and temperature is constant (31,1°C): this individuates two rays – respectively parallel to the pressure and temperature axes – defining the zone in which CO2 is in the supercritical state; in particular, within this state, the possible combinations of pressure and temperature are shown to variate CO2 solubilizing properties.

The reasons for the choice of this supercritical solvent are of economic (CO2 is cheap), environmental (CO2 is not toxic, it does not harm the ozone layer, it does not pollute and it does not contaminate the extracts) and technical (CO2 critical conditions can be reached easily) concern. SC-CO2 assumes the characteristics of a non polar solvent and it is comparable to n-Hexane; it has the characteristic to solubilize compounds which are scarcely soluble in water due to their nature.

Systèmes d'extraction au CO2 supercritique

If essential oils are wanted, the presence of water in the matrix interferes negatively on the process, because it is extracted together with the oil, hence it is necessary to remove it in a second moment. In order to avoid this problem, vegetable matrices are usually dried before extraction, unless extracts containing also polar substances are wanted. In this case it is necessary to add other solvents (entrainers or co-solvents) directly to the matrix or to the CO2, like ethanol or water, able to extract those compounds.

CO2 is chemically inert, so isomerization, oxidation or components hydrolysis are avoided. The advantage of this technique is that at the end of the extraction, the solvent can be removed as a gas, offering the possibility to recover the extracted concentrated compounds. In the industrial processes, CO2 can be recycled minimizing its consume. This technique finds several applications such as oil extraction from seeds, caffeine extraction from coffee, nicotine extraction from tobacco, etc.; it is also very convenient at industrial level. The advantages in using supercritical CO2 are largely of a “health and safety” and environmental nature and relate to increased unease about the presence of organic solvent residues in material for human consumption. It has good solvent characteristics for non-polar and slightly polar solutes.

It has a convenient critical temperature (31ºC). This enables extractions to be carried out at comparatively low temperature (often as low as 40 or 50ºC), decreasing the risk of damage of thermolabile compounds.

Most of the volatile components, which tend to be lost in hydro-distillation, are present in the supercritical extracts. Partly because of this, extracts obtained in this way tend to have flavor and taste, which are well liked by tasty panels. Extraction of natural raw material with supercritical CO2, allows the obtaining of extracts which flavor and taste are perfectly respected and reproducible. The supercritical fluid ability to vaporize non-volatile components (at moderate temperatures) reduces the energy spent, when comparing to distillation. Once the pressure excess in the equipment prevents oxygen entry while extraction occurs, oxidation reactions don’t happen.

In chemistry, we often talk about chemicals and solvents in terms of their polarity. Some chemicals are highly polar (i.e. water) and some chemicals are highly non-polar (i.e. hexane). When describing how a particular solvent will dissolve a chemical – there is a rule of thumb that ‘like dissolves like’. Meaning, a non-polar solvent will dissolve a non-polar chemical. All fats and oils are non-polar, thus using a non-polar solvent is most appropriate.

Extraction par fluides supercritiques (EFS)

Extraction par fluides supercritiques (EFS)

SFE is an alternative compared to the classic separation systems like fractionated distillation, steam current distillation, solvent extraction or thermal desorption. SFE can be applied to systems on a different scale: from lab-scale, analytic (from few hundreds milligrams to few grams of sample) or preparative (few hundreds grams of sample), to the pilot scale (kilograms of matrix), up to the industrial scale treating tons of raw material (e.g. in the coffee decaffeination process).
SFE can substitute many traditional extraction processes from vegetable matrices for the obtainment of dry extracts or essential oils with specific characteristics. The extraction of substances from complex mixtures, in particular, can be made highly selective modifying properly the operational temperature and pressure conditions, in order to adapt them to the Solubility of the different components of interest. An example is the terpenes removal from the essential oils from citruses and other officinal plants, through which a mixture of aromatic components stable to light and temperature is obtained (generally monoterpenes are not, and sometimes they contribute in no way to the smell).

On the basis of such premises, SFE progressively imposed itself as one of the elective technologies for the treatment, with different goals, of several raw materials of alimentary, pharmaceutical and cosmetic interest (active principles extraction and officinal herbs components extraction). Although theoretically there are many supercritical fluids available for the purpose, CO2 is the Fittest. In fact it is non toxic, inert, non flammable, cheap, recyclable and environmentally harmless. CO2 extraction is a modern extraction technology for hydrophobic vegetable components realized according to a clean procedures without release of any residue nor solvent substances.
After the extraction the operation pressure is lowered and the CO2 loses its solvent power releasing the solute substances, which are available in a concentrated and pure form. For these reasons FDA marked this process as GRAS (Generally Recognized As Safe). Natural substances, moreover, usually are not very stable at high temperatures, and need to be kept at temperatures next to the environmental one: CO2’s critical temperature is 31°C, making of it particularly fit as solvent for biologic substances. Proteins, carbohydrates, inorganic salts or metals are not co-extracted in any way. CO2 extracts are microbiologically stable and do not need particular storage conditions, because given their nature they are practically sterile. Unlike conventional procedures, the Extraction Selectivity is Specific.
The method does not involve thermal stress and does not need organic solvents.